
S U S T A I N A B L E P R O D U C T I O N A N D C O N S U M P T I O N ( ) –

Contents lists available at ScienceDirect

Sustainable Production and Consumption

journal homepage: www.elsevier.com/locate/spc

Intuitionistic fuzzy multi-criteria decision making framework
based on life cycle environmental, economic and social
impacts: The case of U.S. wind energy

Serkan Gumusa,b, Murat Kucukvarc,∗, Omer Tataria

aDepartment of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
bDepartment of Basic Sciences, Turkish Military Academy, Ankara, Turkey
cDepartment of Industrial Engineering, Istanbul Sehir University, Uskudar, 34662, Turkey

A B S T R A C T

Intuitionistic Fuzzy Set theory can be used in conjunction with environmentally extended input–output based life

cycle assessment (EE-IO-LCA) models to help decision makers to address the inherent vagueness and uncertainties

in certain sustainable energy planning problems. In this regard, the EE-IO-LCA model can be combined with an

intuitionistic fuzzy set theory for a multi-criteria decision making (MCDM) application with a set of environmental

and socio-economic indicators. To achieve this goal, this study proposes the use of the Technique for Order of

Preference by Similarity to Ideal Solution method to select the best wind energy alternative for a double layer MCDM

problem, which requires expert judgments to simultaneously apply appropriate weighting to each life cycle phase

and sustainability indicator to be considered. The novelty of this research is to propose a generic 9-step fuzzy MCDM

method to solve sustainable energy decision-making problems using a combination of three different techniques:

(1) an intuitionistic fuzzy entropy method to identify the individual importance of phases and criteria; (2) an IFWGA

operator to establish a sub-decision matrix with the weights applied to all relevant attributes; and (3) an IFWAA

operator to build a super-decision matrix with the weights applied to all of the life-cycle phases considered. This

proposed method is then applied as a case study for sustainable energy planning, specifically for the selection of

V80 and V90 onshore and offshore wind turbines to be installed in the United States. It is strongly believed that this

methodology will provide a vital guidance for LCA practitioners in the future for selecting the best possible energy

alternative under an uncertain decision-making scenario.

Keywords: Multi-criteria decision making; Intuitionistic fuzzy sets; Aggregation operator; TOPSIS; Life cycle

sustainability assessment; Wind energy
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1. Introduction

1.1. Wind energy and life cycle assessment

The environmental, economic, and social problems associ-
ated with the US energy industry create tremendous chal-
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lenges and opportunities, requiring a holistic sustainability
assessment of different energy policies for decision-making
problems and other practical applications associated with the
US energy sector (Anadon et al., 2009). The US energy indus-
try will inevitably require a technological revolution to ad-
dress its many current challenges, including issues related to
energy security, environmental sustainability, and economic
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competitiveness (Anadon et al., 2011). In the US, there is
currently an unprecedented interest in wind energy tech-
nologies as a very promising sustainable energy alternative.
According to the US Department of Energy (DOE)’s futuristic
scenario, 20% of the US power grid mix will be obtained from
onshore and offshore wind power plants by 2030. To achieve
this goal, The US government will need to supply 300,000 MW
(megawatts) of additional wind generation capacity (US De-
partment of Energy, 2008). Inevitably, the growing share of
wind energy in the US electrical power grid will require a
greater understanding of the environmental, economic, and
social (a.k.a. the triple-bottom-line, or TBL) impacts of wind
energy projects. To analyze the total social, economic, and
environmental impacts of wind energy technologies, a thor-
ough life cycle assessment (LCA) is used to quantify the total
cradle-to-grave environmental impacts of a predetermined
functional unit of energy, accounting for impacts from vari-
ous life cycle phases such as raw material extraction, produc-
tion, construction, use, and final disposal (Pehnt et al., 2008;
Martinez et al., 2009; Weinzettel et al., 2009; Gujba et al., 2010;
Santoyo-Castelazo et al., 2011).

Process-based LCA (P-LCA) is the most commonly used
method in current LCA literature, having been used
extensively for various environmental analyses of wind
energy and other applications (Lenzen and Munksgaard,
2002), but the P-LCA methodology is subject to “truncation
errors” due to narrowly defined system boundaries (Onat
et al., 2014a,b; Cellura et al., 2012; Kucukvar et al., 2015). In
P-LCA models, mostly onsite impacts are considered without
a full coverage of all upstream supply chain contributions
(Kucukvar and Samadi, 2015; Lenzen, 2000; Onat et al., 2015a).
To address these limitations, Environmentally-Extended
Economic Input–Output based LCA (EE-IO-LCA) approaches
have been proposed to quantify the environmental burdens
of the systems being analyzed by tracing their entire supply
chain and accounting for the corresponding (Cellura et al.,
2011; Kucukvar and Tatari, 2011; Egilmez et al., 2013, 2014;
Kucukvar et al., in press). Several studies have used the
P-LCA method, the EE-IO-LCA method, and/or a combination
of both methods in LCA analyses of wind energy alternatives
(Park et al., 2015; Wiedmann et al., 2011). For instance,
Jungbluth et al. (2014) used the P-LCA method to analyze
the environmental impacts of four different onshore wind
turbines, each with different capacities ranging from 30 to
800 kW, and one offshore wind turbine with a capacity
of 2 MW. Lenzen and Wachsmann (2004) focused on a
particular wind turbine located in Brazil and Germany and
estimated the effects of geographic factors on its energy
consumption and carbon dioxide (CO2) emissions. Ardente
et al. (2008) developed a P-LCA model to evaluate the
energy and environmental impacts of a wind farm consisting
of 11 wind turbines, each with an individual capacity of
660 kW. Atilgan and Azapagic (2015) investigated the life
cycle environmental impacts of electricity generation from
fossil fuel power plants in Turkey, including 16 lignite power
plants, eight hard coal power plants, and 187 gas power
plants. In another study, Martinez et al. (2009) developed
P-LCA model for a 2-MW offshore wind turbine installed in
Spain. Weinzettel et al. (2009) utilized the LCA methodology
for a floating wind turbine, and the results were compared
with those of conventional offshore wind turbines and of
electricity from a natural combined gas cycle. In a recent
study, Noori et al. (2015a) developed an EE-IO-LCA model to
compare the environmental impacts of V80 and V90 onshore
and offshore wind turbines installed in the US.

Although LCA literature is abundant with studies address-
ing the life-cycle impacts of wind energy technologies, only
a handful of works concentrated on the socio-economic im-
plications of wind energy in addition to the environment
(Noori et al., 2015b; Slattery et al., 2011). Triple bottom line
(TBL) impacts, which cover all three dimensions of sustain-
ability, are therefore a critical concept for policy-makers to
quantify trade-offs between different dimensions of sustain-
ability (Jeswani et al., 2010). The TBL concept focuses on the
three main dimensions of sustainable development (envi-
ronment, economy, and society) (Elkington, 1997; Wiedmann
et al., 2009) and has also been integrated into EE-IO-LCA anal-
yses to capture all direct and indirect environmental and
socio-economic impacts. For instance, Foran et al. (2005a,b)
developed a TBL model of the industrial sectors of Australia’s
entire economy, including environmental, economic, and so-
cial metrics for 135 sectors. Researchers from the Univer-
sity of Sydney constructed the TBL-EIO model and created
the BottomLine3 software for the economies of Australia,
the UK, and Japan (Wiedmann and Lenzen, 2009). Several
studies have also used the TBL-EIO methodology for sustain-
ability analysis of supply chains (Foran et al., 2005a,b), com-
panies (Wiedmann et al., 2009), buildings (Onat et al., 2014a),
electric vehicles (Onat et al., 2014c; Onat, 2015a), energy (Ma-
lik et al., in print), pavement alternatives (Kucukvar et al.,
2014a,b), and construction sectors (Kucukvar and Tatari, 2013;
Kucukvar et al., 2014c). In a recent work, Noori et al. (2015b)
constructed a hybrid LCA model by combining a TBL analy-
sis with the EE-IO-LCA method to compare the ecological and
socio-economic sustainability performance of V80 and V90
onshore and offshore wind turbines installed in the US.

1.2. Multi-criteria decision making

In current literature, the multi-criteria decision-making
(MCDM) method is used to select the most feasible energy
alternative based on different environmental, economic and
social indicators of sustainability. The MCDM literature for
energy-related decision making problems mainly focuses on
ranking renewable energy alternatives, determining optimal
energy resource allocations, and planning various projects
(Ardente et al., 2004). A comprehensive review of studies on
MCDM approaches for energy planning showed that the An-
alytic Hierarchy Process (AHP), Preference Ranking Organi-
zation Method for Enrichment of Evaluations (PROMETHEE),
the Elimination and Choice Translating Reality (ELECTRE)
method, the weighted sum method, the weighted product
method, compromise programming, and the Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS) are
among the most widely used MCDM methodologies in the lit-
erature (Greening and Bernow, 2006; Kucukvar et al., 2014b;
Løken, 2007; Pohekar and Ramachandran, 2004; Wang et al.,
2009a,b; Onat et al., 2016a), and these MCDM techniques have
been extensively applied for ranking the best energy alterna-
tives. For instance, Wang et al. (2009a,b) focused on the bene-
fits of MCDM analyses in sustainable energy decision-making
and presented a comprehensive review on commonly-used
MCDM approaches and indicators. San Cristóbal (2011) ap-
plied a combination of compromised ranking and the AHP
method to the selection of renewable energy projects in
Spain. Furthermore, MCDM methods are frequently used to
compare different alternatives for electricity and heat supply,
assess the feasibility of wind turbines for an island in Italy
(Cavallaro and Ciraolo, 2005), and select the best wind farm
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project in China (Lee et al., 2009). Azapagic et al. (2016) also
proposed a novel decision support framework, namely DE-
SIRES which includes a suite of tools such as scenario anal-
ysis, life cycle costing, life cycle assessment, social sustain-
ability assessment, system optimization, and multi-attribute
decision analysis.

The TOPSIS method, first introduced by Hwang and Yoon
(1981), is one of the most well-known classical multi-criteria
decision making (MCDM) approaches. The primary goal of the
TOPSIS method is to find the alternative with the shortest
distance from the positive ideal solution as well as the
longest distance from the negative ideal solution (Hwang
and Yoon, 1981; Chen and Tzeng, 2004). TOPSIS method
and its applications are widely utilized in the literature. For
example, Lai et al. (1994) extended the TOPSIS approach
to overcome a multiple objective decision making problem.
In another example, Chen and Tzeng (2004) combined the
TOPSIS method and gray relation analysis to evaluate and
choose the best alternative. In a later study, Jahanshahloo
et al. (2006a) introduced an extension of the TOPSIS method
for decision-making problems to account for the use of
interval data as needed for a given problem.

1.3. The fuzzy set theory and aggregation operators

Uncertainty and vagueness are inevitable in real-world de-
cision making problems, making it very difficult to deter-
mine crisp, easily applicable numbers for the criteria in
question and thereby make an exact evaluation and per-
formance ranking of the decision making alternatives being
compared (Egilmez et al., in print, 2015; Kahraman et al.,
2009). Therefore, most of the selection parameters cannot be
given precise values, and decision makers usually must ex-
press the evaluation data of the alternatives’ suitability for
various subjective criteria and the weights of said criteria in
linguistic terms (Wang et al., 2009a,b; Doukas et al., 2007; Kaya
and Kahraman, 2011; Heo et al., 2010; Talinli et al., 2010). For
this reason, the theory of fuzzy sets introduced by Zadeh has
achieved a great success in different areas like MCDM prob-
lems (Zadeh, 1965; Ardente et al., 2004).

The TOPSIS method is a widely accepted multi-attribute
decision-making technique due to its simultaneous consider-
ation of the ideal and anti-ideal solutions, as well as its easily
programmable computation procedure. In the fuzzy TOPSIS
method, linguistic preferences can easily be converted into
fuzzy numbers that can be more readily used in subsequent
calculations. Chen (2000) introduced a TOPSIS methodology
that defined the rating of each alternative and the weight of
each criterion with linguistic terms presented in triangular
fuzzy numbers, and a vertex method was developed to cal-
culate the distance between any two triangular fuzzy num-
bers. Jahanshahloo et al. (2006b) introduced a generalization
of the TOPSIS method for decision-making problems using
fuzzy data. Yang and Hung (2007) also used the fuzzy TOP-
SIS method as a decision-making method for layout design
problems.

In fuzzy set theory, every element of a particular non-
fuzzy set has a membership degree between 0 and 1, and
each element’s non-membership degree is equal to 1 minus
its corresponding membership degree. On the other hand,
the sum of the membership and non-membership degrees
of an element in a fuzzy set can be less than 1, in which
case a hesitation degree must be defined. To illustrate
this concept, Atanassov proposed the idea of Intuitionistic

Fuzzy Sets (IFSs), which are an extension of the concept
of fuzzy sets, in 1986 (Atanassov, 1986). Different research
studies on MCDM problems have also been found that
have utilized the TOPSIS method based on an intuitionistic
fuzzy environment. For instance, Atanassov et al. (2005)
discussed intuitionistic fuzzy interpretations of the processes
of multi-person and multi-measurement MCDM tools. Liu
andWanga (2007) presented novel methods for solving MCDM
problems in an intuitionistic fuzzy environment, and also
defined a number of new score and evaluation functions to
measure the degrees of decision maker’s requirements. Li
(2005) and Lin et al. (2007) each introduced new methods
to solve single-person MCDM problems based on IFSs and
partial weight information. Wei (2008) studied intuitionistic
fuzzy MCDM methods based on information about criteria
weights that are completely unknown or incompletely
known, and introduced a maximizing deviation method-
based approach. Boran et al. (2009) proposed a TOPSIS
methodology that combined intuitionistic fuzzy sets and
intuitionistic fuzzy weighted averaging (IFWA) operators for
supplier selection problems. Li et al. (2009) proposed a
new methodology for MCDM problems using IFSs; in their
method, for each expert in the group, two auxiliary fractional
programming models were derived from the TOPSIS method
to determine the relative closeness coefficient intervals of
each alternative. Kucukvar et al. (2014a,b) proposed a fuzzy
MCDM methodology for ranking the life cycle sustainability
performance of different pavement alternatives, using two
important methods (including the TOPSIS method) to select
the best pavement alternative, and using the intuitionistic
fuzzy entropy method to identify the importance of different
criteria and life cycle phases. Onat et al. (2015b) used the
intuitionistic fuzzy MCDM and TOPSIS methods to rank the
life cycle sustainability performance of alternative passenger
vehicles. In a recent paper, Egilmez et al. (2015) also
proposed a multi-criteria intuitionistic fuzzy decision making
model, using the fuzzy set and TOPSIS methods as multi-
criteria decision making tools to rank the environmental
performance of the 27 US and Canada metropoles. Several
studies can also be found in the literature in which MCDM
problems are analyzed using intuitionistic fuzzy set theory
(Su et al., 2011; Wang, 2009).

The field of MCDM is more suitable for using fuzzy and in-
tuitionistic fuzzy aggregation operators, so researchers have
developedmany aggregation operators for applications in this
area of study. For instance, Xu and Yager (2006) introduced
new geometric aggregation operators, including intuitionis-
tic fuzzy ordered weighted geometric (IFOWG) operators, in-
tuitionistic fuzzy weighted geometric (IFWG) operators, and
intuitionistic fuzzy hybrid geometric (IFHG) operators. Xu
(2007a) introduced intuitionistic fuzzy weighted arithmetic
averaging (IFWAA) operators based on arithmetic aggregation
operators, as well as intuitionistic fuzzy weighted geometric
averaging (IFWGA) operators based on the geometric aggre-
gation operators. In addition, Xu (2007b) defined arithmetic
aggregation operators such as IFWA operators, intuitionis-
tic fuzzy ordered weighted averaging (IFOWA) operators, and
intuitionistic fuzzy hybrid aggregation (IFHA) operators. In
another study, Xu (2009) proposed intuitionistic fuzzy ag-
gregation operators based on Choquet integrals, such as in-
tuitionistic fuzzy correlated averaging (IFCA) operators and
intuitionistic fuzzy correlated geometric (IFCG) operators,
among others. The aforementioned operators not only con-
sider the importance of the elements in question or their or-
dered positions, but can also highlight correlations among
these elements and/or their ordered positions.
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1.4. A fuzzy MCDM methodology for sustainable energy
planning

The use of MCDM in sustainable energy planning has gained
a tremendous degree of interest in recent literature, and
many researchers have used a combination of MCDM and
fuzzy methods to select the best possible energy options
among the considered set of alternatives. The following
important studies have used a fuzzy MCDM approach to
select optimal energy alternatives for different scenarios
(Kaya and Kahraman, 2011; Heo et al., 2010):

• Kahraman and Kaya (2010) applied a fuzzy MCDMmethod-
ology in order to rank the best energy alternatives based
on various types of criteria (environmental, socio-political,
economic, and technological) and constructed a modified
fuzzy AHP framework to identify the priority weights of
different energy policy options. In this fuzzy AHP frame-
work, experts assigned a definite number on a 1–9 scale
to a pairwise comparison matrix in order to determine the
priority vector. The results found wind energy to be the
best energy policy compared to energy from other alter-
natives such as solar, biomass, geothermal, hydropower,
natural gas, coal, lignite, and nuclear-oil.

• Kaya and Kahraman (2010) developed an integrated ap-
proach by combining fuzzy set theory with the VIKOR &
AHP methods to determine the best renewable energy al-
ternative for Istanbul, Turkey among alternative energy
production sites in the same city. In the algorithm used
in this study, the AHP method was used to determine the
weights of each criterion with pairwise comparison ma-
trices. During the pairwise comparison process, linguistic
terms were linked with fuzzy numbers to enable decision
makers to give more comfortable judgments. Wind energy
was found to be the most convenient renewable energy
source, and the Çatalca region was found to be the best
place among the available locations for setting up the wind
turbines.

• Kaya and Kahraman (2011) used a modified fuzzy TOP-
SIS methodology to identify the most feasible energy al-
ternative. First, fuzzy pairwise comparison matrices were
used to determine the weights of the selection criteria. The
evaluation criteria for alternative energy alternatives were
then categorized under four categories: social, economic,
environmental, and technological. The selected main in-
dicators for the problem set were efficiency, cost of invest-
ment, operation &maintenance cost, nitrogen oxide (NOx)

emissions, CO2 emissions, land use, social adoption, and
employment. Based on the fuzzy TOPSIS results, wind en-
ergy was once again selected as the best energy option.

• Heo et al. (2010) built a fuzzy-AHP framework to select a
set of renewable energy dissemination programs for Ko-
rea with which to increase the share of renewable en-
ergy resources to 33 Million tons-of-oil-equivalents (TOEs).
Five criteria categories (technological, market-related, eco-
nomic, environmental, and policy-related) and a total of
seventeen different factors were selected after a compre-
hensive literature review. The results showed economic
feasibility to be the most important area to focus on for
the successful dissemination of energy alternatives, fol-
lowed by global market size and technological feasibility,
respectively.

• Boran et al. (2012) concentrated on the renewable energy
development in Turkey, and built an intuitionistic fuzzy
TOPSIS model to evaluate the long-term sustainability per-
formance of several renewable energy technologies for
electricity production, including solar, hydro, wind, and
geothermal energy. These energy technologies were eval-
uated based on five criteria (price, carbon emissions, re-
source availability, efficiency, and negative social costs),
and the importance of each criterion was evaluated based
on the intuitionistic fuzzy set. The results ranked hy-
dropower as the best alternative, followed by wind energy
due to its high degree of public acceptance and greater re-
source availability in Turkey.

1.5. Research objectives and contribution to the state-of-
the-art

The majority of the reviewed studies are case studies of
energy decision-making problems using expert judgments for
a predetermined set of sustainability indicators. However, the
reviewed EE-IO-LCA models, which quantitatively measure
the sustainability impacts of energy alternatives, are subject
to significant uncertainties due to sector aggregation, data
quality limitations, and linearity assumptions, and these
uncertainties are not sufficiently integrated with a fuzzy
MCDM model alone. Also, the results of LCA analyses
are commonly presented in terms of the contributions of
separate life cycle phases for each sustainability performance
metric. This makes a double-layer MCDM analysis well suited
to fully integrate the results of a LCA analysis into fuzzy
models (Kucukvar et al., 2014a,b). The current fuzzy MCDM
problem is therefore solved using a double-layer MCDM
model, since the weights of each life cycle phase and each of
the measured environmental and socio-economic indicators
must be separately determined with intuitionistic values
based on expert opinions. Hence, the overarching goals of this
study are to present a fuzzy MCDM method combining the
EE-IO-LCA results and to develop a TOPSIS method with
which to rank and select the best of the considered
alternatives for a double layer MCDM problem, based on
intuitionistic fuzzy entropy and intuitionistic fuzzy averaging
operators.

To achieve these goals, the intuitionistic fuzzy entropy
method is used to identify important evaluation phases
and attributes, after which an IFWGA operator is applied to
establish a sub-decision making matrix based on the weights
applied to each of the attributes, while an IFWAA operator is
used to build a super-decision matrix based on the weights
of individual life cycle phases. The TOPSIS method is a
widely used multi-attribute decision-making approach, and
has been selected for this study because it simultaneously
considers both the ideal solution and the worst possible
non-ideal solution. The TOPSIS method also has an easy
computational procedure using excel spreadsheets, allowing
linguistic preferences to be easily converted into fuzzy
numbers for a fuzzy TOPSIS analysis.

In this research, the MCDM framework includes sev-
eral sustainability indicators and life cycle phases, including
phases corresponding to manufacturing, construction, trans-
portation, and use. Two types of fuzzy data have been created
to deal with uncertain parameters, such as the fuzzy weights
of sustainability indicators and the fuzzy data of sustainabil-
ity impacts for each life cycle phase. First, the fuzzy weights
of the indicator categories are determined using a linguistic
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approach based on expert judgments. Second, the environ-
mental and socio-economic impact data for each life cycle
phase associated with wind power plants are collected and
transformed into a single fuzzy dataset, as such compatibility
makes the assessment more robust in terms of dealing with
the inherent uncertainty associated with sustainability im-
pact data and expert opinions. Consequently, the developed
intuitionistic fuzzy MCDM model differs from the previous
fuzzy MCDM approaches by (a) using the results of a holis-
tic EE-IO-LCA study on environmental and socio-economic
impacts of offshore and onshore wind turbines installed in
US (Noori et al., 2015b), (b) constructing a double layer fuzzy
MCDM model specific to this problem, as the weights of
each life cycle phase and each social, economic, and/or en-
vironmental indicator are to be determined based on expert
opinions with intuitionistic values, and (3) performing the
EE-IO-LCA-based ranking of V80 and V90 onshore and off-
shore wind turbines, as wind power was selected as the best
energy option in a majority of the reviewed studies.

The rest of the paper is organized as follows. First, defini-
tions relating to IFSs, IFWAA operators, IFWGA operators, and
fuzzy entropy are presented in Section 2. Second, the steps of
the proposed method are given Section 3. Third, a case study
for the application of the proposed method and the results
thereof are given in Sections 4 and 5, respectively. Finally, con-
clusions and recommendations for future work are presented
in Section 6.

2. Preliminaries

2.1. Intuitionistic fuzzy sets

Some basic concepts and definitions of IFSs are presented as
follows:

Definition 1. Let X be a fixed set. An IFS α is an object having
the form (Atanassov, 1986):

α = {⟨x, µα(x), να(x)⟩ | x ∈ X} (1)

where the mappings are presented as “µα: X → [0,1]” and “να:
X → [0,1]” under the condition “0 ≤ µα(x)+να(x) ≤ 1” for each
x ∈ X. µα(x) and να(x) are defined as the degree of membership
and the degree of non-membership, respectively, of element
x ∈ X to set α.

Obviously, if να(x) = 1 − µα(x), then every IFS (α) on a
nonempty set X becomes a Fuzzy Set.

Definition 2. Let X be a fixed set where α is an IFS in X. The
intuitionistic fuzzy hesitation (a.k.a. the non-determinacy or
uncertainty) degree of whether or not x belongs to α is defined
as follows:

πα(x) = 1 − µα(x) − να(x). (2)

This degree arises due to lack of knowledge, or ‘personal
error’. Clearly, if

πα(x) = 1 − µα(x) − να(x) = 0.

For every x ∈ X, the IFS α becomes a fuzzy set where 0 ≤

πα(x) ≤ 1 (Atanassov, 1986).

Definition 3. Let α = (µα(x), να(x), πα(x)) be an intuitionistic
fuzzy number (IFN) where µα(x) ∈ [0,1], να(x) ∈ [0,1], 0 ≤

µα(x) + να(x) ≤ 1, and πα(x) = 1 − µα(x) − να(x).

Definition 4. Let: α = (µα, να, πα ) and β =

µβ, νβ, πβ


be two

IFNs in X. Then the following three statements are true:

(1) α ⊗ β =

µαµβ, να + νβ − νανβ,

1 − µαµβ − να − νβ + νανβ


,

(2) αλ
=


(µα)λ ,1 − (1 − να)λ , (1 − να)λ − (µα)λ


, λ > 0,

(3) λα =


1 − (1 − µα)λ , (να)λ , (1 − µα)λ − (να)λ


, λ > 0.

This study will use a normalized Euclidean distance of two
IFSs. According to Szmidt and Kacprzyk (2000):

Definition 5. If A = {⟨x, (µα(x), να(x), πα(x))⟩ |x ∈ X } and
B =


x,

µβ(x), νβ(x), πα(x)


|x ∈ X


are two IFSs in X =

x1, x2, . . . , xm

, then the normalized Euclidean distance

between A and B is given as follows:

d(A,B) =

 1
2m

m
j=1


µα(xj) − µβ(xj)

2
+


να(xj) − νβ(xj)

2

+


πα(xj) − πβ(xj)


2
1/2

(3)

where πα = 1 − µα − να and πβ = 1 − µβ − νβ.

2.2. Intuitionistic fuzzy weighted averaging operators

Now, definitions will be provided for intuitionistic fuzzy arith-
metic weighted averaging (IFWAA) operator and intuitionistic
fuzzy geometric weighted averaging (IFWGA) operators (Xu,
2007a,b):

Definition 6. Assuming that α1, α2, . . . , αp is an IFS, where αi =
µαi , ναi , παi


and i = 1,2, . . . ,p, the IFWAA operator is defined

as follows:

IIFWAAω(α1, α2, . . . , αp) =

p
i=1

ωiαi

=


1 −

p
i=1

(1 − µαi )
ωi ,

p
i=1

(ναi )
ωi ,

p
i=1

(1 − µαi )
ωi −

p
i=1

(ναi )
ωi


, (4)

where ωi is the weight of αi, 0 ≤ ωi ≤ 1 and
p

i=1 ωi = 1.

Definition 7. Assuming that α1, α2, . . . , αp is an IFS, where
αi =


µαi , ναi , παi


and the degree of hesitation for αi is παi =

1−µαi −ναi where i = 1,2, . . . ,p, the IFWGA operator is defined
as follows:

IFWGAω(α1, α2, . . . , αp) =

p
i=1

α
ωi
i

=

 p
i=1

(µαi )
ωi , 1 −

p
i=1

(1 − ναi )
ωi ,

p
i=1

(1 − ναi )
ωi −

p
i=1

(µαi )
ωi


. (5)

When we look the aggregation results of IFWAA and
IFWGA operators, we can see that these operators are still
IFSs. In addition, these operators emphasize different points.
The IFWAA operator emphasizes the group’s influence, and
therefore this operator is not very sensitive to αi ∈ IFS
(i = 1,2, . . . ,p). On the other hand, the IFWGA operator
emphasizes the individual influence, therefore this operator
is more sensitive to αi ∈ IFS (i = 1,2, . . . ,p). Consequently,
IFWAA operator is used to calculate the super decision matrix
based on weights of phases. IFWGA operator is then used
to calculate an aggregated intuitionistic fuzzy sub-decision
matrix.
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2.3. Intuitionistic fuzzy entropy

Shannon (1948) proposed the entropy function as a measure
of uncertainty in a discrete distribution based on the Boltz-
mann entropy of classical statistical mechanics. De Luca and
Termini (1972) introduced the axiom construction of fuzzy
entropy and referred to Shannon’s probability entropy as a
measure of the amount of knowledge. Szmidt and Kacprzyk
(2001) extended the axioms of De Luca and Termini (1972)
to introduce the new definition for an entropy measure on
IFSs. Vlachos and Sergiadis (2007) proposed a useful defini-
tion of intuitionistic fuzzy entropy, accounting for the hes-
itation degree, consisting of the fuzziness degree and the
hesitation degree of the IFS. To determine the entropy weights
with respect to a set of criteria represented by IFSs, Ye (2010)
introduced an entropy weight model, which can be utilized
to find the optimal criteria weights, and proposed an assess-
ment formula for a weighted correlation coefficient between
a particular alternative and the hypothetical ideal alternative.
An entropy weight model is established to determine crite-
ria weights when knowledge of such weights is definitely un-
known, in which case the criteria values take the form of IFNs.
In this study, the entropy weights method was used to assign
weights to each of the specified life cycle phases and to each
sustainability indicator measured for the considered alterna-
tives (Vlachos and Sergiadis, 2007; Ye, 2010).

Definition 8. Let C =

C1,C2, . . . ,Cn


be the set of criteria and

γ =

γ1, γ2, . . . , γk


be the set of decision makers, whereas the

decision of the dth decision maker regarding the ith criterion
is an IFS where α =


µd(Ci), νd(Ci), πd(Ci)


. Then,

Hi = −
1

k ln 2

k
d=1

[µd(Ci) lnµd(Ci) + vd(Ci) lnvd(Ci)

− (1 − πd(Ci)) ln(1 − πdCi) − πd(Ci) ln 2] . (6)

Definition 9. Let C =

C1,C2, . . . ,Cn


be the set of criteria with

weights W =

w1,w2, . . . ,wn


. The weight of the ith criterion

is determined with the exact model of entropy weights as
shown below:

wi =
1 − Hi

n −

n
i=1

Hi

where
n

i=1

wi = 1. (7)

If µwi = 0, vwi = 0 and πwi = 1 then µwi lnµwi = 0,
vwi lnvwi = 0 and (1 − πwi ) ln(1 − πwi ) = 0.

3. Research methodology

This section describes the TOPSIS method proposed in this
study for double layer MCDM problems based on intuitionistic
fuzzy entropy and intuitionistic fuzzy averaging operators to
select the most appropriate alternative, in which linguistic
terms take the form of Intuitionistic fuzzy numbers (IFNs)
that are used for evaluations. This method is modeled for a
double layer MCDM problem using the EE-IO-LCA results for
each decision-making alternative. The required definitions
for the introduced method are as follows:

(i) γd, (d = 1,2, . . . , k), a discrete set of k decision makers,
(ii) ℘s, (s = 1,2, . . . , ℓ), a finite set of s phases with a

weights vector of ϖ = [ϖ1, ϖ2, . . . ,ϖℓ], where ϖs =
µϖs (℘s), νϖs (℘s), πϖs (℘s)


. For the remainder of this

study, this weights vector will be defined as ϖs =
µϖs , νϖs , πϖs



(iii) Ci, (i = 1,2, . . . ,n), a finite set of n criteria in every life cycle
phase, with a weights vector of W = [w1,w2, . . . ,wn],

where wi =

µwi (Ci), νwi (Ci), πwi (Ci)


. For the remainder

of this study, this weights vector will be defined as wi =
µwi , νwi , πwi


.

(iv) αj, (j = 1,2, . . . ,p) a discrete set of p alternatives.

This study will integrate the fuzzy entropy method, the in-
tuitionistic geometric average operator (IFWGA), the dynamic
intuitionistic fuzzy operator (IFWAA), and the TOPSIS method
into a nine-step fuzzy MCDM method to rank and select the
most suitable alternative. Fig. 1 presents an illustration of the
problem and the steps of the proposed method.

3.1. A 9-step fuzzy MCDM model

Step 1: Evaluate phases and indicators by decision makers:
Decision makers evaluate criteria and phases using lin-

guistic terms linked with IFNs.

Step 2: Obtain the weights of indicators and phases, where
℘s, (s = 1,2, . . . , ℓ) is a finite set of s phases with a weights
vector of ϖ = [ϖ1, ϖ2, . . . ,ϖℓ], where ϖs =


µϖs , νϖs , πϖs


,

and Ci, (i = 1,2, . . . ,n) is a finite set of n criteria in every
phase with a weights vector of W = [w1,w2, . . . ,wn], where
wi =


µwi , νwi , πwi


. To obtain the weight vectors (ϖ andW),

the exact model of entropy weights in an IFS (Eqs. (6)–(7)) is
used as follows:

Hs = −
1

ℓ ln 2

ℓ
s=1

[µϖs lnµϖs + vϖs lnvϖs

− (1 − πϖs ) ln(1 − πϖs ) − πϖs ln 2] (8)

Hi = −
1

n ln 2

n
i=1


µwi lnµwi + vwi lnvwi

− (1 − πwi ) ln(1 − πwi ) − πwi ln 2

. (9)

If µϖs = 0, vϖs = 0 and, πϖs = 1 then (1−πϖs ) ln(1−πϖs ) =

0, µϖs lnµϖs = 0 and vϖs lnvϖs = 0, respectively. This can
also be written as, if µwi = 0, vwi = 0 and πwi = 1 then
µwi lnµwi = 0, vwi lnvwi = 0 and (1 − πwi ) ln(1 − πwi ) = 0
respectively. The entropy weights of the sth phase and the ith
criterion are defined as follows:

ϖs =
1 − Hs

ℓ −

ℓ
s=1

Hs

where
ℓ

s=1
ϖs = 1 (10)

ωi =
1 − Hi

n −

n
i=1

Hi

where
n

i=1

ωi = 1. (11)

Step 3: Evaluate alternatives with decision makers in terms
of each criterion: Decision makers evaluate the alternatives
using linguistic terms linked with IFNs.

Step 4: Construct an aggregated IF sub-decision matrix for
every phase based on the opinions of decision makers.

Let Rs =


rij

s


n×p

be an sth aggregated IF sub-decision

matrix of decision maker ratings (s = 1,2, . . . , ℓ), and
let α =


α1, α2, . . . , αp


be a discrete set representing p

alternatives. Decision maker evaluations of alternatives with
linguistic terms will allow for an easier decision-making
process. Every linguistic term corresponds to an IFN with
its own specific membership and non-membership degrees.
Therefore, the elements that comprise the sub-decision
matrix are themselves composed of IFNs. The term


rdij


s

represents the assessment of the dth decision maker based
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Fig. 1 – The steps of proposed method (IFWAA: Intuitionistic fuzzy arithmetic weighted averaging; IFWGA: Intuitionistic
fuzzy geometric weighted averaging).

on the jth criteria regarding the ith alternative in the sth
phase of the life cycle, and is also an IFN such that


rdij


s

=
µd
ij


s
,

νdij


s
,

πdij


s

, where the degree of hesitation for

rdij


s
is calculated as


πdij


s

= 1 −


µd
ij


s

−


νdij


s
, where i =

1,2, . . . ,n, d = 1,2, . . . , k, j = 1,2, . . . ,p, and s = 1,2, . . . , ℓ. The
weights vector of the nth criterion is W = [w1,w2, . . . ,wn],
where wi =


µwi , νwi , πwi


. To construct the aggregated IF

sub-decision matrix, all individual decision makers’ opinions
have to be merged to one final group decision, so the IFWGA
operator will be used for this purpose. The aggregated IF
sub-decision matrix is represented with the term Rs =

rij

s


n×p

, and is calculated as follows:


rdij


s

= IFWGAW


r1ij


s
,

r2ij


s
, . . . ,


rkij


s


=

k
d=1


rdij


s

wi
=


r1ij


s

wi
⊗


r2ij


s

wi

⊗ · · · ⊗


rkij


s

wi

=

 k
d=1


µd
ij


s

wi
,1 −

k
d=1


1 −


νdij


s

wi
,

k
d=1


1 −


νdij


s

wi
−

k
d=1


µd
ij


s

wi

 . (12)

Here (rij)s = ((µij)s, (νij)s, (πij)s), i = 1,2, . . . ,n, j = 1,2, . . . ,p,
and s = 1,2, . . . , ℓ. The aggregated intuitionistic fuzzy

sub-decision matrix for each period can therefore be repre-
sented as follows:

Rs =


rij

s


n×p

=




r11


s


r12


s


r13


s · · ·


r1p


s

r21

s


r22


s


r23


s · · ·


r2p


s

r31

s


r32


s


r33


s · · ·


r3p


s

.

.

.
.
.
.

.

.

.
. . .

.

.

.
rn1


s


rn2


s


rn3


s · · ·


rnp


s


n×p

. (13)

Step 5: Establish the aggregated weighted IF super decision
matrix.

Using the weights of different life cycle phases (Step 2)
and the corresponding Rs sub-decisionmatrix of these phases
(Step 4), the aggregated weighted IF super decisionmatrix can
be established using an IFWAA operator. For this matrix, the
following operation is used:

R =


rij

n×p

rij = IFWAAϖ


r1ij, r

2
ij, . . . , r

ℓ
ij


=


1 −

ℓ
s=1


1 − µ

rij

s

ϖs

,

ℓ
s=1


ν

rij

s

ϖs

,

ℓ
s=1


1 − µ

rij

s

ϖs

−

ℓ
s=1


ν

rij

s

ϖs
(14)

where ϖs, (s = 1,2, . . . , ℓ) represents the weights of
the sth phase, resulting in a weights vector of ϖ =
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[ϖ1, ϖ2, . . . ,ϖℓ] where ϖs =

µϖs , νϖs , πϖs


. The weighted

complex intuitionistic fuzzy super decision matrix is then
written as follows:

R =


rij

n×p

=



r11 r12 r13 · · · r1p
r21 r22 r23 · · · r2p
r31 r32 r33 · · · r3p
.
.
.

.

.

.
.
.
.

. . .
.
.
.

rn1 rn2 rn3 · · · rnp


n×p

. (15)

Step 6: Calculate the ideal solutions.
Let δ1 and δ2 represent benefit and cost criteria,

respectively, and let ϕ− be intuitionistic fuzzy negative-ideal
solution (IFNIS) and ϕ+ be intuitionistic fuzzy positive-ideal
solution (IFPIS). Then ϕ− and ϕ+ are calculated as follows:

ϕ+

Ci
=


µ

ϕ+

i
(Ci), νϕ+

i
(Ci), πϕ+

i
(Ci)


(16)

ϕ−

Ci
=


µ

ϕ−

i
(Ci), νϕ−

i
(Ci), πϕ−

i
(Ci)


(17)

µ
ϕ+

i
(Ci) =


max

j
µrij

(Ci)
i ∈ δ1


,


min

j
µrij

(Ci)|i ∈ δ2


(18)

ν
ϕ+

i
(Ci) =


min

j
νrij

(Ci)
i ∈ δ1


,


max

j
νrij

(Ci)|i ∈ δ2


(19)

µ
ϕ−

i
(Ci) =


min

j
µrij

(Ci)
i ∈ δ1


,


max

j
µrij

(Ci)|i ∈ δ2


(20)

ν
ϕ−

i
(Ci) =


max

j
νrij

(Ci)
i ∈ δ1


,


min

j
νrij

(Ci)|i ∈ δ2


. (21)

Step 7: Calculate the distance measures.
The distances between alternatives are measured based

on the IFS, and different methods are available with which to
measure these distances; this study will use the intuitionistic
fuzzy normalized Euclidean distance method. The positive
distance measure (d+

j ) and negative distance measure (d−

j )

of each alternative are calculated using Eqs. (22) and (23),
respectively:

d+

j =


1
2n

n
i=1


µrij

(Ci) − µ
ϕ+

i W(Ci)
2

+


νrij

(Ci) − ν
ϕ+

i W(Ci)
2

+


πrij

(Ci) − π
ϕ+

i W(Ci)


2
1/2

(22)

d+

j =


1
2n

n
i=1


µrij

(Ci) − µ
φ−

i W(Ci)
2

+


νrij

(Ci) − ν
φ−

i W(Ci)
2

+


πrij

(Ci) − π
φ−

i W(Ci)


2
1/2

. (23)

Step 8: Calculate the closeness coefficients.
The closeness coefficient of jth alternative, α′

j, is calculated

by using the IF positive-ideal solution (d+

j ) and IF negative-

ideal solution (d−

j ) as follow:

α′

j =

d−

j

d+

j + d−

j

, where 0 ≤ x̃j ≤ 1. (24)

Step 9: Select the most appropriate alternative.
After determining the closeness coefficients of all consid-

ered alternatives, α′

j(j = 1,2, . . . ,p), the closeness coefficients

are all ranked accordingly, and the alternative with the high-
est closeness coefficient is selected as the most suitable alter-
native.

4. The case for onshore and offshore wind
power plants

For purposes of this study, a wind turbine selection problem
is selected as a case study, due to the environmental and
socio-economic implications of wind turbines observed from
a comprehensive EIO-LCA analysis. In this case study, the
decision makers desire to choose the best wind turbine
alternative with which to generate electric power for the
US power grid. Four wind turbine alternatives from VESTAS
(α1 = V80-2.0 MW onshore, α2 = V90-3.0 MW onshore,
α3 = V80-2.0 MW offshore, and α4 = V90-3.0 MW offshore)
are selected as alternatives for this problem (Vestas Wind
Systems A/S, 2006; Elsam, 2004). These wind turbines are
represented by V90-3.0 MW and V80-2.0 MW turbines, which
are assumed to be installed both onshore and offshore in
the US. The EE-IO-LCA methodology is applied to quantify
the environmental and socio-economic impacts of each wind
turbine prior to the decision making process (Kucukvar
and Tatari, 2013; Noori et al., 2015b). Three experts from
the Sustainable Systems Analysis Research Group at the
University of Central Florida are assigned as decision makers
to evaluate the weights of the considered impacts for
each LCA phase and the weights of the relevant criteria
using the results of LCA, after which the decision makers’
linguistic evaluations are aggregated to yield a mean value
for each pairwise comparison. Several other researchers
have applied a similar weighting strategy likewise based on
expert judgments (Kahraman et al., 2009; Kahraman and
Kaya, 2010; Kucukvar et al., 2014a; Wang et al., 2009a,b). The
decision makers will evaluate the selected wind turbines
based on 9 different sustainability indicators (attributes):
(1) C1: employment; (2) C2: government tax; (3) C3: income;
(4) C4: business profit; (5) C5: import; (6) C6: land footprint;
(7) C7: water withdrawal; (8) C8: energy use; and (9) C9:
greenhouse gas (GHG) emissions. In this problem, the first five
criteria (C1,C2,C3,C4,C5) represent benefit attributes, while
the remaining four criteria (C6,C7,C8,C9) are cost attributes.
Hence, δ1 =


C1,C2,C3,C4,C5


and δ2 =


C6,C7,C8,C9


.

4.1. Indicator selection

This research uses five socio-economic indicators (business
profit, import, income, government tax, and employment)
and four environmental indicators (carbon footprint, energy
use, water withdrawal, and land footprint). The authors’
reasons for selecting these indicators are briefly explained in
the following two subsections.

4.1.1. Socio-economic indicators
Social and economic sustainability indicators are an inte-
gral part of any life-cycle sustainability assessment model
(Kloepffer, 2008; Stamford and Azapagic, 2012). For evalua-
tions of energy systems, socio-economic indicators (including
job creation, income, and profit) are extensively used (Wang
et al., 2009a,b). In addition, according to the Policy and Op-
erations Evaluation Department of the Netherlands’ Ministry
of Foreign Affairs, there is a two-way relationship between
household income and renewable energy consumption for
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Table 1 – Definitions of linguistic variables for the importance of phases and sub criteria and evaluation of alternatives.

Linguistic terms (Evaluation of alternatives) Linguistic terms (Weights of phases and indicators) IFN

Very Very Good (VVG)/Very Very High (VVH) Very Very Important (VVI) (0.95, 0.05)
Very Good (VG)/Very High (VH) Very Important (VI) (0.75, 0.15)
Good (G)/High (H) Important (I) (0.65, 0.25)
Medium (M) Mid-Level Importance (M) (0.50, 0.35)
Bad (B)/Low (L) Unimportant (UI) (0.35, 0.55)
Very Bad (VB)/Very Low (VL) Very Unimportant (VUI) (0.15, 0.75)
Very Very Bad (VVB)/Very Very Low (VVL) Very Very Unimportant (VVUI) (0.05, 0.95)

Table 2 – Evaluation and weights of phases.

DM1 DM2 DM3

℘1: Manufacturing VI VVI VI
℘2: Construction M I VI
℘3: Transportation M VI M
℘4: Use UI UI UI

any given country, and each energy system creates many jobs
during the construction, maintenance, and end-of-life phases
of its life cycle. In fact, a majority of the reviewed studies con-
sidered income and employment as a useful social indicator
for selecting renewable energy technologies (Afgan and Car-
valho, 2004; Chatzimouratidis and Pilavachi, 2008; Santoyo-
Castelazo and Azapagic, 2014).

4.1.2. Environmental indicators
The United Nations Environmental Programme (UNEP) has
listed water scarcity, climate change, energy resource deple-
tion, and ecological land degradation among the most impor-
tant issues related to sustainable development (UNEP, 2012),
and several studies have considered environmental impact
categories to evaluate the sustainability energy systems. For
instance, life-cycle energy consumption and GHG emissions
have often been considered in previous studies as evalua-
tion criteria for energy systems (Atilgan and Azapagic, 2015;
Dimitriou et al., 2015; Lenzen, 2008; Kouloumpis et al., 2015),
and accounting for interactions regarding water, energy, and
land is critical for a comprehensive energy alternative analy-
sis (Evans et al., 2009; Zhang and Anadon, 2013; Zomer et al.,
2008). Urban sprawl is also one of the most significant chal-
lenges of urbanization, which requires the expansion of ur-
ban cities into agricultural land. Moreover, energy systems
will have a certain land footprint, and the required amount
of land for each power plant is an important indicator for a
proper sustainability evaluation of any energy system (Jacob-
son and Delucchi, 2011).

5. An application and results

Step 1: Evaluate phases and indicators by decision makers.
Linguistic terms corresponding to the IFNs in this study

are presented in Table 1. These terms are used to assess
the life-cycle phases and indicators. The importance of the
indicators and phases is identified by the decisionmakers and
summarized in Tables 2 and 3.

Step 2: Obtain the weights of indicators and phases.
Using fuzzy entropy (Eqs. (8)–(11)), we can calculate the

weights of indicators and phases, which are shown in Fig. 2.

Step 3: Evaluate alternatives by decision makers in terms of
each criterion.

Table 3 – Evaluation and weights of criteria.

DM1 DM2 DM3

C1: Employment I VI VVI
C2: Government tax M M I
C3: Income I VI VVI
C4: Business profit M UI M
C5: Import UI UI M
C6: Land footprint UI UI M
C7: Water withdrawal VI M I
C8: Energy use VI I VI
C9: Total GHG VI VI VVI

The decision makers evaluated all alternatives for each
life-cycle phase with the linguistic terms presented in Table 1,
using IFNs corresponding to the degree of importance with
respect to each alternative. The decision makers’ evaluation
is summarized in Tables 4 through 7 for each phase.

Step 4: Construct an aggregated IF sub-decision matrix for
each phase based on the decision makers’ evaluations from
Step 3.

The sth aggregated weighted IF sub-decision matrix,
Rs =


rij

s


n×p

, was calculated using the IFGWA operator

as presented in Eq. (12). Tables 8 through 11 present the
aggregated weighted IF sub-decisionmatrices for each phase.

Step 5: Establish an aggregated weighted IF super decision
matrix.

The aggregated weighted IF super decision matrix R =
rij

n×p

was calculated using the IFGAA operator as presented

in Eq. (14). Table 12 presents the aggregated weighted IF super
decision matrix R.

Step 6: Calculate the ideal solutions.
The first five attributes selected for this analysis

(C1,C2,C3,C4,C5) are assumed to be benefit attributes, and
the remaining four attributes (C6,C7,C8,C9) are assumed to
be cost attributes. In other words, δ1 =


C1,C2,C3,C4,C5


and

δ2 =

C6,C7,C8,C9


. Then ϕ+, the collection of IIF positive-

ideal solutions, and ϕ−, the collection of IIF negative-ideal
solutions, are both determined using Eqs. (18)–(21) as follows:

ϕ+
=


ϕ+
c1 , ϕ+

c2 , ϕ+
c3 , ϕ+

c4 , ϕ+
c5 , ϕ+

c6 , ϕ+
c7


=


(0.843,0.101 ) , (0.983,0.011 ) , (0.888,0.080 ) ,

(0.965,0.025 ) , (0.995,0.004 ) , (0.969,0.021 )

(0.806,0.136 ) , (0.656,0.267 ) , (0.520,0.368 )


ϕ−

=


ϕ+
c1 , ϕ+

c2 , ϕ+
c3 , ϕ+

c4 , ϕ+
c5 , ϕ+

c6 , ϕ+
c7


=


(0.596,0.291 ) , (0.910,0.068 ) , (0.616,0.267 ) ,

(0.991,0.006 ) , (0.968,0.022 ) , (0.995,0.004 )

(0.935,0.043 ) , (0.903,0.061) , (0.846,0.112 )

 .

Step 7: Calculate distance measures.
The positive distance measure (d+

j ) and the negative

distance measure (d−

j ) of each alternative were calculated



10 S U S T A I N A B L E P R O D U C T I O N A N D C O N S U M P T I O N ( ) –

Table 4 – Evaluation of alternatives for the manufacturing phase.

V80 onshore V90 onshore V80 offshore V90 offshore
DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

C1 G G G VG VVG G G M G M M M
C2 VG VVG VG M VG G P P P P P P
C3 VG VVG G VG VVG G M M M M M M
C4 VG VVG VG VVG VVG VVG G G G G P M
C5 H VH VH H VH H M M M M M L
C6 VVH VVH VVH VVH VVH VVH VH VH H H M H
C7 H VH H H H H M M M L M M
C8 VH VH VVH VH VH VH M M M L L L
C9 VVH H VVH H H H M M M M L M

Table 5 – Evaluation of alternatives for the construction phase.

V80 onshore V90 onshore V80 offshore V90 offshore
DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

C1 VG VVG VG VG VG VG P M M P P M
C2 VG VVG VG VVG VVG VVG M M G M P M
C3 G VG G VG VG VG P M M P P P
C4 VG G VG VVG VVG VVG M M M M M M
C5 VVH VVH VH H VH H L H L L L L
C6 VH VVH VH VH VH VH L M M L L M
C7 VVH VH VVH VH VH VH M M L L M L
C8 H H H VH E VH M H M M M M
C9 L VL L L L L H M M H H M

Table 6 – Evaluation of alternatives for the transportation phase.

V80 onshore V90 onshore V80 offshore V90 offshore
DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

C1 VG VVG VG VG VVG VG P P M P P P
C2 VVG VVG VG VVG VVG VVG M M M P P P
C3 VG VG VVG VG G VG M M M P P P
C4 M M M VG VVG VG P M P P P P
C5 VH VVH VVH VH VVH VVH L L L L L L
C6 VH VH VH VH VH VH L M M L L M
C7 VVH VVH VH VVH VVH VVH M M M M M M
C8 VVH VH VH VH VH VH M M M L L L
C9 H H VH H H H M M M M L L

Table 7 – Evaluation of alternatives for the use phase.

V80 onshore V90 onshore V80 offshore V90 offshore
DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

C1 VG VG VG G G G VG VG VG M M P
C2 VVG VVG VVG M G M VVG VVG VG M M P
C3 VG VG VG M M M M M M M M M
C4 VG VG VG G G G G G M M M M
C5 VVH VVH VVH M M H M M M L L L
C6 VH VH VH VH H H VH VH H M M M
C7 VH VH VH H H H H H H M L M
C8 VH VVH VVH H H H H H H M M M
C9 VVH VVH VVH H VH H VVH VVH VH L L L

Table 8 – The aggregated IF decision matrix for the manufacturing phase

RT1


.

V80 onshore V90 onshore V80 offshore V90 offshore

C1 (0.75, 0.17, 0.07) (0.84, 0.10, 0.05) (0.71, 0.20, 0.09) (0.63, 0.25, 0.12)
C2 (0.98, 0.10, 0.01) (0.96, 0.03, 0.02) (0.90, 0.07, 0.02) (0.90, 0.07, 0.02)
C3 (0.84, 0.10, 0.06) (0.84, 0.10, 0.06) (0.63, 0.25, 0.12) (0.63, 0.25, 0.12)
C4 (0.99, 0.01, 0.00) (0.99, 0.01, 0.00) (0.97, 0.02, 0.01) (0.97, 0.02, 0.01)
C5 (0.99, 0.01, 0.00) (1.00, 0.00, 0.00) (0.98, 0.01, 0.01) (0.97, 0.02, 0.01)
C6 (1.00, 0.00, 0.00) (1.00, 0.00, 0.00) (0.98, 0.01, 0.01) (0.98, 0.02, 0.01)
C7 (0.90, 0.06, 0.03) (0.89, 0.07, 0.03) (0.83, 0.11, 0.06) (0.81, 0.14, 0.06)
C8 (0.91, 0.05, 0.03) (0.88, 0.07, 0.05) (0.74, 0.17, 0.09) (0.64, 0.29, 0.07)
C9 (0.87, 0.09, 0.03) (0.72, 0.20, 0.08) (0.59, 0.28, 0.13) (0.54, 0.34, 0.12)
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Fig. 2 – Weights of (a) life cycle phase, and (b) criteria.

Table 9 – The aggregated IF decision matrix for the construction phase

RT2


.

V80 onshore V90 onshore V80 offshore V90 offshore

C1 (0.87, 0.08, 0.05) (0.83, 0.10, 0.07) (0.59, 0.30, 0.11) (0.54, 0.36, 0.10)
C2 (0.98, 0.01, 0.01) (1.00, 0.00, 0.00) (0.94, 0.04, 0.02) (0.93, 0.05, 0.02)
C3 (0.80, 0.13, 0.07) (0.97, 0.03, 0.00) (0.63, 0.25, 0.12) (0.63, 0.25, 0.12)
C4 (0.99, 0.01, 0.00) (0.99, 0.01, 0.00) (0.97, 0.02, 0.01) (0.96, 0.03, 0.01)
C5 (0.98, 0.01, 0.01) (0.99, 0.01, 0.00) (0.96, 0.03, 0.01) (0.95, 0.04, 0.01)
C6 (0.99, 0.01, 0.00) (0.99, 0.01, 0.00) (0.96, 0.03, 0.01) (0.96, 0.03, 0.01)
C7 (0.97, 0.02, 0.01) (0.93, 0.04, 0.03) (0.81, 0.14, 0.06) (0.78, 0.16, 0.05)
C8 (0.83, 0.12, 0.05) (0.91, 0.05, 0.03) (0.77, 0.15, 0.08) (0.70, 0.21, 0.08)
C9 (0.75, 0.17, 0.08) (0.72, 0.20, 0.08) (0.54, 0.34, 0.12) (0.49, 0.40, 0.11)

Table 10 – The aggregated IF decision matrix for the transportation phase

RT3


.

V80 onshore V90 onshore V80 offshore V90 offshore

C1 (0.87, 0.08, 0.05) (0.87, 0.08, 0.05) (0.54, 0.36, 0.10) (0.50, 0.41, 0.09)
C2 (0.99, 0.01, 0.00) (1.00, 0.00, 0.00) (0.94, 0.04, 0.02) (0.90, 0.07, 0.02)
C3 (0.63, 0.25, 0.12) (0.87, 0.08, 0.05) (0.54, 0.36, 0.10) (0.50, 0.41, 0.09)
C4 (0.99, 0.01, 0.00) (0.99, 0.01, 0.00) (0.96, 0.03, 0.01) (0.96, 0.03, 0.01)
C5 (0.99, 0.01, 0.00) (0.98, 0.01, 0.01) (0.97, 0.02, 0.01) (0.95, 0.04, 0.01)
C6 (0.99, 0.01, 0.00) (0.99, 0.01, 0.00) (0.96, 0.03, 0.01) (0.96, 0.03, 0.01)
C7 (0.97, 0.02, 0.01) (0.99, 0.01, 0.00) (0.83, 0.11, 0.06) (0.83, 0.11, 0.06)
C8 (0.91, 0.05, 0.03) (0.88, 0.07, 0.11) (0.74, 0.17, 0.09) (0.64, 0.29, 0.07)
C9 (0.75, 0.17, 0.08) (0.72, 0.20, 0.08) (0.59, 0.28, 0.13) (0.49, 0.40, 0.11)

Table 11 – The aggregated IF decision matrix for the use phase

RT4


.

V80 onshore V90 onshore V80 offshore V90 offshore

C1 (0.83, 0.10, 0.07) (0.75, 0.17, 0.07) (0.83, 0.10, 0.07) (0.59, 0.30, 0.11)
C2 (1.00, 0.00, 0.00) (0.94, 0.04, 0.02) (0.99, 0.01, 0.00) (0.93, 0.05, 0.02)
C3 (0.83, 0.10, 0.07) (0.75, 0.17, 0.07) (0.71, 0.20, 0.09) (0.63, 0.25, 0.12)
C4 (1.00, 0.00, 0.00) (0.98, 0.01, 0.01) (0.97, 0.02, 0.01) (0.96, 0.03, 0.01)
C5 (0.99, 0.01, 0.00) (0.98, 0.01, 0.01) (0.98, 0.01, 0.01) (0.97, 0.02, 0.01)
C6 (0.99, 0.01, 0.00) (0.98, 0.01, 0.01) (0.98, 0.01, 0.01) (0.97, 0.02, 0.01)
C7 (0.93, 0.04, 0.03) (0.89, 0.07, 0.03) (0.89, 0.07, 0.03) (0.81, 0.14, 0.06)
C8 (0.95, 0.04, 0.02) (0.83, 0.12, 0.05) (0.83, 0.12, 0.05) (0.74, 0.17, 0.09)
C9 (0.96, 0.04, 0.00) (0.75, 0.17, 0.08) (0.91, 0.06, 0.03) (0.45, 0.45, 0.09)

using the normalized Euclidean distance from Eqs. (22)–(23),
and the results are presented in Table 13.

Step 8: Calculate closeness coefficients.

The closeness coefficient of the jth alternative, α′

j, was

determined using the IIF positive-ideal solution (d+

j ) and

the IIF negative-ideal solution (d−

j ), and the results are

summarized below:

α′

1 = 0.403, α′

2 = 0.533, α′

3 = 0.467,

α′

4 = 0.539.

Step 9: Select the most appropriate alternative.
After ranking the values of α′

j (j = 1,2,3,4) in descending

order, the alternative ranking order was found to be such that
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Table 12 – Aggregated weighted IF super decision matrix R
T.

V80 onshore V90 onshore V80 offshore V90 offshore

C1 (0.809, 0.127, 0.065) (0.843, 0.101, 0.056) (0.673, 0.231, 0.096) (0.596, 0.291, 0.113)
C2 (0.983, 0.011, 0.006) (0.980, 0.015, 0.005) (0.926, 0.053, 0.021) (0.910, 0.066, 0.023)
C3 (0.813, 0.124, 0.064) (0.888, 0.080, 0.031) (0.625, 0.259, 0.116) (0.616, 0.267, 0.117)
C4 (0.991, 0.007, 0.003) (0.987, 0.008, 0.004) (0.970, 0.020, 0.010) (0.965, 0.025, 0.010)
C5 (0.989, 0.007, 0.004) (0.995, 0.004, 0.001) (0.974, 0.017, 0.009) (0.968, 0.022, 0.010)
C6 (0.995, 0.004, 0.001) (0.995, 0.004, 0.001) (0.978, 0.014, 0.008) (0.969, 0.021, 0.010)
C7 (0.935, 0.043, 0.022) (0.928, 0.050, 0.022) (0.831, 0.111, 0.058) (0.806, 0.136, 0.057)
C8 (0.903, 0.061, 0.036) (0.888, 0.066, 0.046) (0.752, 0.163, 0.085) (0.656, 0.267, 0.077)
C9 (0.846, 0.112, 0.042) (0.722, 0.195, 0.083) (0.607, 0.273, 0.120) (0.520, 0.368, 0.113)

Table 13 – Negative and positive distance measures.

d+ d−

A1 1.719 2.547
A2 2.250 1.974
A3 1.762 2.008
A4 2.505 2.142

A4 > A2 > A3 > A1. A4 has the highest value, and is therefore
the best wind turbine for the objectives previously discussed
for this case study.

6. Conclusions and future work

In this study, an intuitionistic fuzzy TOPSIS method was
proposed for evaluating wind energy technologies in the
US First, the results of an EE-IO-LCA analysis are used
to quantify the overall environmental and socio-economic
impacts of onshore and offshore wind turbines at each life
cycle phase, after which the decision makers evaluated each
energy alternative based on the TBL sustainability impacts
of each LCA phase. Second, the evaluation results were
obtained, taking into account the applicable weight of each
specified criterion and each life cycle phase, also using
IFWAA and IFWGA operators to account for the influence of
individual decision makers on alternatives and the overall
group influence on the selection of criteria and life cycle
phases for further analysis. Finally, the proposed method
was applied to a real case study in which the aim was to
rank the performance of wind turbines installed in the US
Based on expert evaluations, the manufacturing phase has
the highest weight for ranking the sustainability performance
of wind energy alternatives, followed by the construction
and manufacturing phases, respectively, while the use phase
has the lowest weight. Among the environmental impact
categories, GHG emissions have the largest importance out
of all of the indicators considered in this analysis. The V90
offshore wind turbine was ranked the highest out of the four
wind turbine alternatives compared in this study. In addition,
wind turbines with a higher power generation capacity (in
this case, the V90 onshore and V90 offshore turbines) were
found to be better alternatives than those with a lower
capacity (the V80 onshore and offshore).

The EE-IO-LCA results in this study are subject to sig-
nificant uncertainties that may arise from errors in mod-
eling, data collection and/or measurement, meaning that
decisions made without sufficiently accounting for these un-
certainties may be inherently flawed and thereby lead to in-
correct policy conclusions. Therefore, the use of fuzzy MCDM
methods is likely to attract more interest as a methodolog-
ical approach for addressing these uncertainties in sustain-

able energy decision-making. For this reason, the proposed
approach contributes to the emerging field of life cycle sus-
tainability performance benchmarking in that it presents an
integrated methodology that includes expert judgments and
a fuzzy MCDM analysis, which can be applied in the future
to similar problems in which multiple negative and positive
sustainability metrics and various life cycle phases must be
simultaneously evaluated. The current fuzzy MCDM model
can also be extended in the future with other available MCDM
methods for the selection of the best energy option from a
set of alternatives, thereby a more thorough consideration
of all relevant uncertainties and making future models more
widely applicable for different alternative-ranking problems.

In the future, the authors aim to broaden and deepen
the existing method and apply the improved generalized
intuitionistic fuzzy aggregation operator to different deci-
sion making problems. Using the life cycle sustainability as-
sessment results of different energy production alternatives
with a greater number of socio-economic indicators (injuries,
pollution cost, human health, social acceptability, etc.), the
proposed methodology can ultimately be used as a generic
MCDM approach for energy-related policy-making. How-
ever, when the number of indicators, stakeholders, and/or
uncertain parameters increases, the expected long-term
effects cannot be fully understood using traditional MCDM
approaches (Onat et al., 2014d). In such cases, system dy-
namics modeling should be applied in conjunction with the
proposed methodology to further investigate the complex in-
teractions among the relevant social, economic, and envi-
ronmental impacts and capture feedback mechanisms (Onat
et al., 2016b; Onat, 2015b).
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